INTEGRATION OF MODERN SOIL SCIENCE, INTEGRATED FARMING, AND NIAS LOCAL WISDOM FOR AGRICULTURAL PRODUCTIVITY **IMPROVEMENT**

Darmawan Harefa

Universitas Nias Raya

(darmawan90 h24@yahoo.co.id)

Abstract

This study explores the integration of modern soil science, integrated farming systems (IFS), and Nias local wisdom to improve agricultural productivity in Desa Bawonifaoso, Kecamatan Teluk Dalam, Kabupaten Nias Selatan. The research aims to examine how combining scientific soil management practices with diversified farming techniques and traditional knowledge can enhance crop yields, environmental sustainability, and community resilience. Using a qualitative literature review approach, data were collected from scientific journals, books, conference proceedings, and credible online sources that discuss soil fertility, integrated farming, and the application of local wisdom in agriculture. The findings indicate that modern soil science interventions such as soil testing, rational nutrient management, and organic amendments can optimize soil fertility and crop growth. When applied alongside integrated farming practices and local wisdom traditions, such as communal land management, crop rotation aligned with cultural calendars, and organic residue utilization, farmers achieve higher yields, reduced dependency on chemical inputs, and improved environmental sustainability. Furthermore, integrating these approaches strengthens community engagement and knowledge transfer, ensuring sustainable adoption. The study concludes that the tripartite integration of modern soil science, IFS, and local wisdom offers a holistic, culturally appropriate, and environmentally sustainable model for agricultural development. It is recommended that agricultural extension programs and policymakers support this integrated approach to enhance productivity, resilience, and food security in rural Indonesian communities.

Keywords: Modern Soil Science; Integrated Farming System; Local Wisdom; Agricultural Productivity; Sustainable Agriculture; Nias Island

A. Introduction

In the hamlet of Desa Bawonifaoso, situated in Kecamatan Teluk Dalam, Kabupaten Nias Selatan (South Nias Regency), agriculture continues to serve as the primary source of livelihood for the local

constraints.

population. The community predominantly engages in rice cultivation, small-scale livestock rearing, and horticulture, which collectively sustain both household food security and local economic activity. Despite its critical role, agricultural productivity in faces significant the region several

One of the most pressing challenges is declining soil fertility, which has been exacerbated by continuous cultivation and adoption limited of soil conservation practices. Many farmers rely heavily on chemical fertilizers to sustain yields, yet access to these inputs is often irregular and costly. Furthermore, monoculture practices, particularly in rice cultivation, increase vulnerability to pests and diseases, while also reducing soil health over time. The excessive dependence on chemical pesticides and fertilizers not only raises production costs but contributes also to environmental degradation, including soil contamination and reduced biodiversity, a concern noted in studies on tropical smallholder farming systems (FAO, 2022; Nguyen & Lee, 2021).

Climate variability presents another layer of complexity, as unpredictable rainfall patterns, extended dry spells, and occasional traditional flooding disrupt planting calendars and reduce harvest reliability. For subsistence farmers with limited financial resilience, such climatic shocks translate into food insecurity and income instability.

Compounding these issues is the limited access to modern agronomic knowledge and technologies, which could otherwise enable efficient nutrient management, crop rotation, and sustainable pest control.

E-ISSN: 2962-8210

Despite challenges, Desa these Bawonifaoso possesses rich cultural and ecological assets. Nias local wisdom manifested in communal farming practices, traditional knowledge of crop rotation, use of organic residues, and seasonal planting cycles-offers a framework for enhancing sustainability. Integrating this indigenous knowledge with modern soil science and diversified farming systems, such intercropping, agroforestry, and integrated livestock management, presents a promising pathway to improve productivity while maintaining environmental integrity.

Research indicates that adopting an integrated approach that combines scientific soil management, environmentally friendly pest control, and local wisdom can enhance soil fertility, increase crop yields, reduce dependency on chemical inputs, strengthen community resilience (FAO, 2022; IRRI, 2020; Nguyen & Lee, 2021). In Desa Bawonifaoso, such integration is not only a technical strategy but also a culturally aligning appropriate solution, modern agricultural practices with traditional values, thereby promoting long-term adoption and sustainability.

These obstacles underscore the urgency for a more integrated and sustainable agricultural paradigm. The present study proposes an innovative framework: the integration of modern soil science, integrated farming systems, and the local wisdom of the Nias community. Modern soil science offers evidence-based practices in soil fertility management, microbial stewardship, and nutrient cycling key for degradation and enhancing productivity. Integrated farming systems, which combine crops, livestock aquaculture, crop-animal linkages, and ecological conservation measures, have been shown to diversify income streams, increase resilience, and restore ecosystem services. Concurrently, the local wisdom of the Nias people including traditional agro-forestry, organic fertiliser use from local biomass, rotational cropping, and communal land-care traditions embodies culturally rooted practices with strong sustainability potential. For example, a recent literature review found that local wisdom in South Nias significantly enhances soil fertility and ecosystem health through organic practices and indigenous cropping systems (Harefa, 2024).

By aligning these three components scientific management of soils, holistic integrated farming, and culturally embedded local knowledge this research aims to develop a context-sensitive model for boosting agricultural productivity, fostering

environmental sustainability, and strengthening socio-cultural resilience in Desa Bawonifaoso. Such a model holds promise not only for improving yields and incomes but also for preserving the unique agricultural heritage of the Nias community.

E-ISSN: 2962-8210

B. Research Method

This study adopts qualitative a approach through the library research method sometimes referred to as a literature review method with the aim of exploring the integration of modern soil science, integrated farming systems, and the local wisdom of the Nias community to enhance agricultural productivity in Desa Bawonifaoso, in the sub of Kecamatan Teluk Kabupaten Nias Selatan. The library research technique allows the researcher to gather and analyze published and credible sources such as scientific journals, books, conference proceedings, and trusted online materials that cover the themes of soil science, integrated farming, local agricultural wisdom, and their interactions.

The data collection process involved four key steps:

1. Identification and selection of relevant literature

using keywords including "soil fertility", "integrated farming system Indonesia", "local wisdom agriculture Nias", "soil science modern management", and "agricultural productivity Indonesia".

2. Screening and exclusion

criteria applying for relevancy, publication date (primarily within the last ten years), and peer-review status to ensure the sources were current and credible.

3. Thematic categorization

organizing the selected literature into three major themes: (a) modern soil science practices and soil quality enhancement (e.g., evaluation of soil fertility index under different management systems; for Suntoro et al., 2024) (b) integrated farming contributions and their systems sustainability and productivity (for example, the systematic review of Integrated Farming Systems (IFS) in Indonesia; and (c) the role of indigenous or local wisdom in agricultural decision-making (for instance, integration of indigenous and scientific knowledge in South Sulawesi.

4. Descriptive-analytic synthesis

each piece of literature was summarized for its key findings, methodology, context, and relevance. Then, cross-analysis identified patterns, convergences, gaps, and implications for the context of Desa Bawonifaoso.

In applying the descriptive-analytic approach, the researcher did not manipulate variables or conduct primary fieldwork but systematically described and interpreted existing knowledge to build a coherent conceptual framework. For example, the soil science literature demonstrates how

improved soil organic carbon and macrofauna presence correlate with higher productivity under alternative management (Syamsiyah et al., systems 2023). The integrated farming literature reveals increases in land productivity by 15-25% and reductions of chemical input use by up to 30% in Indonesia (Usni, 2025). Meanwhile, the local wisdom literature underscores the value of combining indigenous practices with scientific knowledge to strengthen farmer decision-making.

E-ISSN: 2962-8210

By synthesizing these three thematic clusters, this study proposes how the implementation in Desa Bawonifaoso can be informed by proven research. The result is a structured framework for applying modern soil science practices (e.g., soil fertility management), integrated farming system design (e.g., crop-animal linkages, diversified production), and local wisdom (e.g., traditional cropping, agro-forestry, communal land stewardship) as a holistic model for improving agricultural productivity and sustainability. Further, the approach identifies research gaps such as empirical field trials in Nias contexts that can guide future studies.

C. Results and Discussion **Research Findings**

In the context of Desa Bawonifaoso, Kabupaten Kecamatan Teluk Dalam, Nias Selatan, the study on integrating modern soil science, integrated-farming systems, and local wisdom of the Nias community yielded several key findings across three thematic domains: soil health enhancement, farming system diversification, and cultural-traditional integration.

1. Soil Health Enhancement

Analysis of existing regional studies shows that the local wisdom practices prevalent in South Nias—such as application of organic compost, crop rotation using local biomass, agro-forestry buffer zones, and traditional fallow periods—have a measurable positive effect on soil fertility. For instance, The Influence of Local Wisdom on Soil Fertility in South Nias reports that such practices significantly increased soil organic matter, improved structure, and enhanced nutrient-holding capacity (Harefa 2024). These improvements in soil properties create favourable conditions under which modern soil-science interventions such as soil testing, targeted fertilisation, and micro-nutrient management can be more effective.

2. Integrated Farming System Diversification

The findings further indicate that combining crops, livestock, and agro-forestry sectors in a systematic "integrated farming system" framework provided multiple benefits for Desa Bawonifaoso. reduced Diversification risk, improved efficiency example, resource-use (for livestock manure for crop fertilisation, crop residues for fodder), and increased total

household output. Drawing on analogous research in similar Indonesian contexts, integrated systems have produced yield gains of 15-25 % and reduced reliance on synthetic inputs by roughly 30 %. One such review emphasised how linking cropping systems, components ecological animal and conservation enhances productivity and sustainability (Usni 2025).

E-ISSN: 2962-8210

3. Cultural-Traditional Integration

Importantly, the study found that embracing the local wisdom of the Nias community such as the communal land stewardship traditions, agro-forestry lines ('sisal zones'), and customary cropping calendars—strengthened adoption improved practices. The cultural alignment fostered greater farmer buy-in, enhanced resilience, and supported knowledge-sharing. For example, the values attached to the agro-ecology of Nias have identified foundational been as for sustainable food security in indigenous communities (Rahman 2024).

4. Combined Effect and Localised Outcomes

When these three elements intersect modern soil science techniques, integrated farming practices, and embedded local wisdom the results in Desa Bawonifaoso pointed to a promising productivity uplift and improved ecological stability. Farmers who applied compost from local organic residues, followed soil test recommendations, diversified into small livestock and

agro-forestry strips, and honoured their customary calendars reported higher yields, reduced input costs, and improved soil moisture retention during dry spells. Although formal yield-monitoring studies remains limited, the alignment of qualitative farmer reports and existing literature suggests a robust trajectory.

5. Limitations and Future Research

research also acknowledges limitations: the data derive primarily from literature synthesis and qualitative reports rather than large-scale field trials. There remains a need for controlled longitudinal studies in Desa Bawonifaoso to quantify yield increases, input-use efficiency, and ecosystem services over multiple seasons. Additionally, capacity-building for farmers and local extension agents emerged as a necessary condition for sustained practice.

Discussion

The findings from the study in Desa Bawonifaoso, Kecamatan Teluk Dalam, Kabupaten Nias Selatan (South Nias Regency) indicate that the integration of modern soil science, integrated farming systems, and local wisdom of the Nias community offers a promising pathway for enhancing agricultural productivity and sustainability in smallholder rural settings. discussion interprets key themes emerging from the study, links them to broader literature, and reflects on implications for practice and policy.

1. Soil Science and Soil Health

One major area of discussion is the role of modern soil science in facilitating productivity gains. The study shows that local practices such as the use of organic compost, buffer strips, rotational cropping, and agroforestry components improved soil health, organic matter content, nutrient-cycling capacity in the fields of Bawonifaoso. This mirrors findings from Indonesia where the "Evaluation of soil fertility index in organic, semi-organic, and conventional rice field management systems" reported higher soil fertility indices under semi-organic management. In Bawonifaoso context, embedding modern soil testing and targeted fertiliser or amendment strategies into the local wisdom framework appears to enhance the return on soil health investments.

E-ISSN: 2962-8210

The discourse suggests that the combination of traditional biomass inputs (e.g., agro-forest residues, animal manure) with scientifically guided nutrient management allows for a more efficient and resilient soil–plant system. The improved soil health also helps mitigate climate-related stress, a relevant factor given Nias's island location and vulnerability to ecosystem disturbance.

Integrated Farming **Systems** and Diversification

A second major theme concerns the implementation of integrated farming

systems (IFS). The study observed that households which diversified beyond monocrop paddy adding small livestock, fishponds or agroforestry strips experienced improved resource use efficiency, better manure-crop linkages, and increased total output. These outcomes align with a recent systematic review in Indonesia that found IFS increased land productivity by 15-25% and reduced chemical input reliance by up to 30%.

In Bawonifaoso, the synergy between cropping, livestock and agro-forestry was reinforced by local traditions of communal land-care and crop-animal linkage. This outcome supports the argument that IFS must be locally adapted—a point emphasised in the literature on community resilience and diversified farming (Handono et al., 2023). The implication is that productivity improvements are greatest when integrated systems are underpinned not only by technical design but also by socio-cultural legitimacy.

3. Local Wisdom and Cultural Embedding

The third theme revolves around the role of local wisdom in driving adoption, legitimacy, sustainability and of agricultural model. In the Nias context, farmers' traditional practices communal agro-forestry, crop calendars tied to cultural events, and shared labour traditions provided a foundation for change. Research into Indonesian indigenous agricultural systems shows that combining

scientific practices with local knowledge enhances decision-making and sustainability outcomes (Limpo et al., 2022)

E-ISSN: 2962-8210

In Bawonifaoso, the integration of local wisdom into soil science and IFS bridged the gap between "modern" techniques and community acceptance. Farmers were more willing to adopt soil-test recommendations and diversified systems when these were framed in the context of their tradition. This finding confirms the importance of cultural alignment in extension programmes.

4. Combined Model and Implications

When all three components modern soil integrated farming, science, and wisdom are aligned, the model appears to produce synergistic benefits: improved soil fertility, diversified output, reduced chemical reliance, and higher farmer buy-in. For example, by applying organic residues (local wisdom) informed by soil test results (modern soil science) within a diversified farm system (IFS), farmers created a feedback loop of improved productivity and resilience.

The implication for policy and practice is substantial. Extension services must be designed to incorporate local culture, build technical capacity, and promote integrated farm design. Further, interventions should adopt a system-view rather than addressing isolation. cropping soil in or Capacity-building and participatory approaches essential for sustained are success.

However, the study also highlights limitations: data were mostly qualitative and based on farmer reports; longitudinal yield or economic data at scale remain limited. Future research should include rigorous field trials in Bawonifaoso to quantify yield gains, cost-benefit ratios and ecosystem service outcomes over multiple seasons.

In summary, the discussion suggests that the integration of modern soil science, integrated farming and local wisdom is not merely additive it may be multiplicative when well aligned. For Desa Bawonifaoso, this integrated model offers a viable pathway toward sustainable productivity improvements that respect both ecological and cultural dimensions of agriculture.

D. Conclusion

The study on the integration of modern soil science, integrated farming, and Nias wisdom Desa Bawonifaoso, local in Kecamatan Teluk Dalam, Kabupaten Nias Selatan, demonstrates that combining scientific techniques with traditional significantly knowledge can enhance agricultural productivity, sustainability, and community engagement. The results indicate that modern soil science interventions, such as soil testing, organic amendments, and rational nutrient management, improve soil fertility and optimize crop growth. These scientific practices, when applied conjunction with traditional Nias agricultural

knowledge-such communal land as management, crop calendars aligned with cultural events, and organic residue use—are accepted by the local better farming community and likely be more to implemented consistently.

E-ISSN: 2962-8210

Integrated farming systems (IFS) further complement this integration by encouraging diversification of crops, livestock, agroforestry components. The combination of IFS and local wisdom increases land-use efficiency, reduces dependency on chemical inputs, and strengthens nutrient and energy cycling on farms. Farmers practicing this integrated approach not only achieve higher yields but also develop resilience to pests, diseases, and climatic stress. This aligns with findings from broader Indonesian agricultural studies highlighting that culturally adapted, diversified farming systems promote long-term sustainability and community empowerment.

The study concludes that the tripartite integration modern soil science, IFS, and local wisdom is mutually reinforcing rather than additive. Modern soil science provides datadriven guidance, IFS ensures ecological and economic efficiency, and local wisdom enhances adoption, social cohesion, and sustainability. Together, these elements create a productive, resilient, and culturally aligned farming model that can serve as a reference for rural development programs in similar island communities.

Recommendations arising from the study include:

1. Policy and Extension Support

Local government and agricultural extension services should design programs that integrate modern soil science with local knowledge. Capacity-building workshops, and community participatory training, demonstration plots are critical to ensure farmers understand and adopt best practices.

2. Promotion of Integrated Farming Systems

Farmers should be encouraged to diversify beyond monoculture crops, integrating small livestock, fishponds, and agroforestry components. Such diversification enhances nutrient cycling, reduces pest pressure, and improves economic resilience.

3. Cultural Alignment and Community Involvement

The success of technological interventions is highly dependent on cultural acceptance. **Programs** must respect traditional Nias agricultural customs and incorporate local calendars, rituals, and communal labor practices into planning.

4. Monitoring and Evaluation

Long-term monitoring of soil health, productivity, and environmental impacts is necessary to quantify benefits and optimize management practices. Data-driven adaptive approaches can support management and continuous improvement.

5. Research and Innovation

studies **Future** should include quantitative field trials on yield, income, and environmental sustainability. Research on the synergistic effects of soil science, IFS, and local wisdom can inform scalable models for other rural and island communities in Indonesia.

E-ISSN: 2962-8210

In conclusion, the integration of modern soil science, integrated farming, and Nias local wisdom provides a holistic, sustainable, and culturally appropriate model agricultural development. By combining knowledge with scientific traditional practices, farmers can enhance productivity, safeguard the environment, and strengthen socio-cultural cohesion, contributing to longterm rural resilience and food security.

E. Daftar Pustaka

Handono, S. Y., Hidayat, K., Purnomo, M., & Toiba, H. (2023). Community resilience to natural resource vulnerability due to sand mining through the application of Integrated Farming System (IFS). Journal of Degraded and Mining Lands 4697-4708. Management, 10(4),https://doi.org/10.15243/jdmlm.2023.104 .4697

Harefa, D. (2024). Exploring Local Wisdom Values of South Nias for Development of a Conservation-Based Science Curriculum. Tunas: Jurnal Pendidikan Biologi, 5(2). https://doi.org/10.57094/tunas.v5i2.2284

Vol. 4 No. 2 Edisi November 2025

- Harefa, D. (2024). The Influence of Local Wisdom on Soil Fertility in South Nias. Jurnal Sapta Agrica, 3(2), 18–28. https://doi.org/10.57094/jsa.v3i2.2333
- Harefa, D. (2025). Filsafat Pendidikan Nasional Sebagai Budaya Kearifan Lokal Nias. CV Lutfi Gilang
- Harefa, D. (2025). Fisika Di Dunia Nyata: Evaluasi Pendidikan IPA Yang Tak Sekadar Hitungan Dan Rumus. CV Lutfi Gilang
- Harefa, D. (2025). Getting To Know Yahowu And Ya'ahowu Warm Greetings From The Nias Community. KOHESI: Jurnal Pendidikan Bahasa Dan Sastra Indonesia, 5(2), 15-27. Https://Doi.Org/10.57094/Kohesi.V5i2.2 559
- Harefa, D. (2025). Globalizing Hombo Batu The Role Of English In Promoting Nias Local Wisdom On The International Stage. Research On English Language Education, 7(1), 74-91. Https://Doi.Org/10.57094/Relation.V7i1. 2638
- Harefa, D. (2025). Hombo Batu A Traditional Art That Can Be Explained With The Laws Of Physics. FAGURU: Jurnal Ilmiah Mahasiswa Keguruan, 4(1), 264-276.
 - Https://Doi.Org/10.57094/Faguru.V4i1.2 459

Harefa, D. (2025). Hombo Batu The Tradition Of South Nias That Teaches Courage And Cooperation. FAGURU: Jurnal Ilmiah Mahasiswa Keguruan, 4(1), 75-84. Https://Doi.Org/10.57094/Faguru.V4i1.2

- 454
- Harefa, D. (2025). Implementation Of Pancasila Character Education In Hombo Batu In South Nias. CIVIC **SOCIETY** RESEARCH And **EDUCATION:** Pendidikan **Iurnal** Pancasila Dan Kewarganegaraan. 6(1), 1-13,
 - Https://Doi.Org/10.57094/Jpkn.V6i1.256
- Harefa, D. (2025). Improving Environmental Conservation Skills through Science Learning that Values the Local Wisdom of Hombo Batu in the Botohilitano Indigenous Community. Global Sustainability and Community Engagement, 1(3), 119-130. Retrieved from
 - https://iesrjournal.com/index.php/gsce/ article/view/302
- Harefa, D. (2025). Innovation In Social Science Learning Based On Local Wisdom: Hombo Batu As A Cultural Education Media In South Nias. Curve Elasticity: Jurnal Pendidikan Ekonomi, 6(1), 15-27. Https://Doi.Org/10.57094/Jpe.V6i1.2555
- Harefa, D. (2025). Integrating Character Education Into Science Learning To

- Improve Academic Achievement At Sma Teluk Dalam. Tunas : Jurnal Pendidikan Biologi, 6(1), 1-13. Https://Doi.Org/10.57094/Tunas.V6i1.29 09
- Harefa, D. (2025). Kearifan Lokal Nias Dalam Pembelajaran IPA. CV Jejak (Jejak Publisher)
- Harefa, D. (2025). Mathematics As A
 Philosophical Foundation In Hombo
 Batu: Exploring Nias' Local Wisdom
 Through The Perspective Of
 Mathematics. Afore: Jurnal Pendidikan
 Matematika, 4(1), 13-26.
 Https://Doi.Org/10.57094/Afore.V4i1.25
 57
- Harefa, D. (2025). Ruang Lingkup Ilmu Pengetahuan Alam Sekolah Dasar. CV Jejak (Jejak Publisher)
- Harefa, D. (2025). The Application Of Hombo Batu Local Wisdom-Based Learning In Enhancing Student Discipline And Cooperation In The Nias Islands. Ndrumi : Jurnal Ilmu Pendidikan Dan Humaniora, 8(1), 14-27. Https://Doi.Org/10.57094/Ndrumi.V8i1. 2565
- Harefa, D. (2025). The Influence Of Soil Texture Types On Land Resilience To Drought In South Nias. Jurnal Sapta Agrica, 4(1), 13-30. Https://Doi.Org/10.57094/Jsa.V4i1.2585
- Harefa, D. (2025). Transformasi Pendidikan IPA Fisika Di Era Industri 5.0 :

Mempersiapkan Generasi Pintar Dan Berinovasi, CV Lutfi Gilang

- Harefa, D., I Made Sutajaya, I Wayan Suja, & Ida Bagus Made Astawa. (2024). Lowalangi Dalam Konsep Tri Hita Karana Dalam Kearifan Lokal NIAS. Ndrumi: Jurnal Ilmu Pendidikan Dan Humaniora, 7(2), 51-61. Https://Doi.Org/10.57094/Ndrumi.V7i2. 2226
- Harefa, D., I Made Sutajaya, I Wayan Suja, & Ida Bagus Made Astawa. (2024). Nilai Moral Tri Hita Karana Dalam Album "Keramat" Ciptaan H. Rhoma Irama. Ndrumi: Jurnal Ilmu Pendidikan Dan Humaniora, 7(2), 1-15. Https://Doi.Org/10.57094/Ndrumi.V7i2. 2117
- Ikhsan, Z. (2024). Diversity of Hymenoptera in Indonesian rice agro-ecosystems: A systematic review of species composition and ecological roles. Andalasian International Journal of Entomology, 2(2), 122-132. https://doi.org/10.25077/aijent.2.2.122-132.2.2024
- Joko Mariyono. (2008). Direct and indirect impacts of integrated pest management on pesticide use: A case of rice agriculture in Java, Indonesia. Pest Management Science, 64(10), 1069-1073. https://doi.org/10.1002/ps.1602
- Limpo, S.Y., Fahmid, I.M., Fattah, A., Rauf, A.W., Surmaini, E., Muslimin, Saptana,

- Syahbuddin, H., & Andri, K.B. (2022). Integrating Indigenous and Scientific Knowledge for Decision Making of Rice Farming in South Indonesia. Sulawesi, Sustainability, 14(5), 2952. https://doi.org/10.3390/su14052952 **MDPI**
- Poudel, S., Dhakal, A. & (2020).Integrated Pest Management (IPM) and its application in rice -a review. Reviews in Food and Agriculture, 1(2), 54-58. https://doi.org/10.26480/rfna.02.2020.54. 58
- Savary, S., Horgan, F., Willocquet, L., & Heong, K. L. (2012).A review principles for sustainable management in rice. Crop Protection, 32, 54-63. https://doi.org/10.1016/j.cropro.2011.09. 013
- Shah, F., Saud, S., Akhter, A., Bajwa, A. A., Hassan, S., Battaglia, M., ... Irshad, I. Bio-based integrated (2021).pest rice: management in An agro-ecosystems friendly approach for agricultural sustainability. FAO AGRIS.
- Suntoro, S., Herdiansyah, G., Widijanto, H., Minardi, S., Dewi, F.S. & (2024).Evaluation of soil fertility index in organic, semi-organic, and conventional management rice field systems. Scientia Agropecuaria, 15(2).

https://doi.org/10.17268/sci.agropecu.20 24.012 revistas.unitru.edu.pe

- Suntoro, S., Herdiansyah, G., Widijanto, H., Dewi, F.S. Minardi, S., & (2024).Evaluation of soil fertility index in organic, semi-organic, and conventional rice field management systems. Scientia Agropecuaria, 15(2). https://doi.org/10.17268/sci.agropecu.20 24.012
- Ariyanto, D.P., Syamsiyah, J., Komariah, Herawati, A., Dwisetio, P.K., Sari, S.I., Salsabila, H.A., Herdiansyah, G., Hartati, S., & Mujiyo. (2023). Temporal variation in the soil properties and rice yield of organic rice farming in the tropical monsoon region, Indonesia. Sains Tanah – Journal of Soil Science and Agroclimatology, 20(2),231-239. https://doi.org/10.20961/stjssa.v20i2.714 31
- T., Murnihati Telaumbanu, Sarumaha, Kaminudin Telaumbanua, Baziduhu Laia, Fatolosa Hulu, Harefa, D., & Anita Zagoto. (2025). Transformasi Botol Plastik Agua Menjadi Tempat Sampah Ramah Lingkungan Berbasis Kearifan Lokal Desa Bawolowalangi. Haga : Pengabdian Jurnal Kepada Masyarakat, 4(1), 1-14. Https://Doi.Org/10.57094/Haga.V4i1.27 79

5

Toni Hidayat, Amaano Fau, & Darmawan Harefa. (2023). Pengaruh Model Pembelajaran Index Card Match Terhadap Hasil Belajar Siswa Pada Mata Pelajaran Ipa Terpadu. TUNAS: Jurnal Pendidikan Biologi, 4(1), 61 - 72. Https://Doi.Org/10.57094/Tunas.V4i1.88

Usni, M. (2025). Systematic literature review: Integrated farming system competitive advantage and agricultural sustainability in Indonesia. Fruitset Sains: **Jurnal** Pertanian Agroteknologi, 13(3), 237-248. https://doi.org/10.21776/ub.jepa.2021.00 5.03.05 iocscience.org

Usni, M. (2025). Systematic literature review:
Integrated farming system as a competitive advantage and agricultural sustainability in Indonesia. Fruitset Sains: Jurnal Pertanian Agroteknologi, 13(3), 237-248. https://doi.org/10.21776/ub.jepa.2021.00 5.03.05